Loss of Mpzl3 Function Causes Various Skin Abnormalities and Greatly Reduced Adipose Depots

نویسندگان

  • Angel G. Leiva
  • Anne L. Chen
  • Priyadharshini Devarajan
  • Zhibin Chen
  • Shadi Damanpour
  • Jessica A. Hall
  • Antonio C. Bianco
  • Jie Li
  • Evangelos V. Badiavas
  • Julia Zaias
  • Mariya Miteva
  • Paolo Romanelli
  • Keyvan Nouri
  • Tongyu Cao Wikramanayake
چکیده

The rough coat (rc) spontaneous mutation causes sebaceous gland (SG) hypertrophy, hair loss, and extracutaneous abnormalities including growth retardation. The rc mice have a missense mutation in the predicted Ig protein Myelin Protein Zero-Like 3 (Mpzl3). In this study, we generated Mpzl3 knockout mice to determine its functions in the skin. Homozygous Mpzl3 knockout mice showed unkempt and greasy hair coat and hair loss soon after birth. Histological analysis revealed severe SG hypertrophy and increased dermal thickness, but did not detect significant changes in the hair cycle. Mpzl3-null mice frequently developed inflammatory skin lesions; however, the early-onset skin abnormalities were not the result of immune defects. The abnormalities in the Mpzl3 knockout mice closely resemble those observed in rc/rc mice, and in mice heterozygous for both the rc and Mpzl3 knockout alleles, indicating that rc and Mpzl3 are allelic. Using a lacZ reporter gene, we detected Mpzl3 promoter activity in the companion layer and inner root sheath of the hair follicle, SG, and epidermis. Loss of MPZL3 function also caused a striking reduction in cutaneous and overall adipose tissue. These data reveal a complex role for Mpzl3 in the control of skin development, hair growth, and adipose cell functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reference Gene Selection in Adipose and Muscle Tissues of Fat-tailed Lori-Bakhtiari Lambs

BACKGROUND: Fat-tailed sheep breeds have a  unique  ability  to  tolerate  periods  of  negative  energy  balance  due to seasonal changes in feed availability. This ability is attributed to presence  of  fat-tail  as  a  body  energy  reserve, however the exact underlying  mechanisms  controlling  the  response  of adipose  tissue  depots  to variations in energy balance in fat-tailed breeds a...

متن کامل

Large increases in adipose triacylglycerol flux in Cushingoid CRH-Tg mice are explained by futile cycling.

Glucocorticoids are extremely effective anti-inflammatory therapies, but their clinical use is limited due to severe side effects, including osteoporosis, muscle wasting, fat redistribution, and skin thinning. Here we use heavy water labeling and mass spectrometry to measure fluxes through metabolic pathways impacted by glucocorticoids. We combine these methods with measurements of body composi...

متن کامل

Extensive weight loss reveals distinct gene expression changes in human subcutaneous and visceral adipose tissue

Weight loss has been shown to significantly improve Adipose tissue (AT) function, however changes in AT gene expression profiles particularly in visceral AT (VAT) have not been systematically studied. Here, we tested the hypothesis that extensive weight loss in response to bariatric surgery (BS) causes AT gene expression changes, which may affect energy and lipid metabolism, inflammation and se...

متن کامل

Negative Energy Balance Induced by Paradoxical Sleep Deprivation Causes Multicompartmental Changes in Adipose Tissue and Skeletal Muscle

Objective. Describe multicompartmental changes in the fat and various muscle fiber types, as well as the hormonal profile and metabolic rate induced by SD in rats. Methods. Twenty adult male Wistar rats were equally distributed into two groups: experimental group (EG) and control group (CG). The EG was submitted to SD for 96 h. Blood levels of corticosterone (CORT), total testosterone (TESTO), ...

متن کامل

Varying capacities for replication of rat adipocyte precursor clones and adipose tissue growth.

Rat adipocyte precursor populations contain clones varying in capacity for replication. In this study we explored factors controlling the frequency of clones of varying replicative capacities (clonal composition). We also explored the relationship between this frequency and fat depot growth. In perirenal and epididymal depots clonal composition was identical bilaterally; perirenal depots contai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 134  شماره 

صفحات  -

تاریخ انتشار 2014